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Adiabatic invariants drive rhythmic human motion in variable gravity
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Voluntary human movements are stereotyped. When modeled in the framework of classical mechanics they
are expected to minimize cost functions that may include energy, a natural candidate from a physiological point
of view also. In time-changing environments, however, energy is no longer conserved—regardless of frictional
energy dissipation—and it is therefore not the preferred candidate for any cost function able to describe the
subsequent changes in motor strategies. Adiabatic invariants are known to be relevant observables in such
systems, although they still need to be investigated in human motor control. We fill this gap and show that the
theory of adiabatic invariants provides an accurate description of how human participants modify a voluntary,
rhythmic, one-dimensional motion of the forearm in response to variable gravity (from 1 to 3g). Our findings
suggest that adiabatic invariants may reveal generic hidden constraints ruling human motion in time-changing
gravity.

DOI: 10.1103/PhysRevE.102.062403

I. INTRODUCTION

All living organisms experience a constant terrestrial gravi-
tational acceleration, denoted as 1g (9.81 m/s2). Gravity, “the
first thing which you don’t think” (A. Einstein), is the most
persistent sensory signal in the brain. However, the sensory
experiences it generates lack the clear phenomenology of an
identifiable stimulus event that characterizes sound, sight, and
even taste. Critically, gravity influences human behavior more
pervasively than any other sensory signal. Exposure to Earth-
discrepant gravity—as during spaceflight—leads to dramatic
structural and functional changes in the human physiology,
including alterations in the cardiovascular [1], neural [2], and
musculoskeletal systems [3]. Nowadays the cerebellum ap-
pears to be a major structure in gravity perception [4,5]. From
experiments done on rhesus monkeys, the latter reference re-
ports on results showing the relevance of the cerebellum in the
detection of the gravitational field and inertial motions. This
includes the neural network analyses sensed by the otolith
organs in the inner ear (see Ref. [5] and references therein).
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Recent neurocomputational approaches explain behavior
by a mixture of feedback and feedforward mechanisms, con-
ceptualized by internal models [6]: The brain plans an action
using available sensory information and makes predictions
about the consequences of that action in the environment.
Any mismatch between this prediction and the information
conveyed by feedback will yield a prediction error used to
improve other actions. This mechanism drives motor adapta-
tion. On Earth, gravity is immutable and plays a primary role
in minimizing prediction errors by providing a strong prior
reference.

What is the best way to fundamentally address the role
of gravity in motor control? One approach consists in chal-
lenging the brain by changing a feature of the environment
that is never supposed to change: gravity itself. Our original
approach is to assess the impact of time-changing gravity on
rhythmic biological motion from a purely mechanical vantage
point, thereby providing further insights into the fundamental
representation of gravity that shapes motor actions. In me-
chanics, the more robust way to track the adaptation of a
dynamical system to a slow change in the external condi-
tions is through the study of adiabatic invariants and their
related action-angle variables describing the system (see, e.g.,
Ref. [7] and Sec. II).

Obviously, living organisms are extraordinarily more com-
plex than a simple point-particle body. It is not at all clear
a priori that the actions of a minded human being can be
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reduced to a standard, simple Lagrangian. Let us give an
everyday example: Lifting a glass of water off a table requires
estimating its weight to adjust the grasping force accordingly.
Drinking half of its content with a straw while the glass rests
on the table does not, however, allow the brain to program a
smaller grasping force, more adapted to the lighter glass [8].
Explicit knowledge of the simplest change in object dynam-
ics is not sufficient to update internal models, and one can
hardly hope to model such behaviors by a standard Lagrangian
or Hamiltonian. Nevertheless our working hypothesis is that
some human actions, one of them being presented in Sec. III,
comply with the behavior of a simple mechanical system, even
if subject to a slowly changing environment, such as a slowly
varying gravitational field.

II. ADIABATIC INVARIANTS AND HUMAN MOTION

An adiabatic invariant determines a property of a system
that stays approximately constant when external changes oc-
cur slowly. Despite their power in revealing constraints on
complex dynamical systems, adiabatic invariants have been
poorly investigated in biomechanics. For instance, in arm
rhythmic motion, the changes in frequency (df ) occurring
during a one-dimensional periodic motion are correlated with
changes in energy (dE ) [9] such that the action variable

I = 1

2π

dE

df
(1)

is constant. Action-angle coordinates are usually adopted
when the Hamiltonian does not depend explicitly on time. The
present work goes beyond previous approaches by immersing
participants in a time-dependent gravitational environment
where the action variables are not necessarily constant unless
the changes in time are adiabatic.

The action-angle variables appeared in the context of
classical mechanics in order to study the integrability of
dynamical systems with finitely many degrees of freedom.
Such systems are said to be integrable if the Hamilton-Jacobi
equation describing them is completely separable. In the early
1960s, the famous Kolmogorov-Arnold-Moser theorem—see
Ref. [10] for a very interesting book telling the history be-
hind this theorem—brought back the action-angle variables
on the scene of classical mechanics in order to characterize
chaotic Hamiltonian systems. Since then and with the seminal
works of Nekhoroshev [11,12] their importance has never
faded out. When a Hamiltonian H (Pα, Qα ), α = 1, . . . , n, is
integrable and leads to bounded trajectories in phase space,
action variables may be defined as follows, in terms of a set of
phase-space coordinates that separates the Hamiltonian,

Iα = 1

2π

∮
�α

Pα dQα, (2)

where �α is the projection of the bounded trajectory in the
plane (Pα, Qα ) for fixed α. Once the Hamilton-Jacobi equa-
tion is separated in the variables (Qα, Pα ), on the solution
of Hamilton’s canonical equations each momentum variable
Pα will depend only on its canonically conjugate variable
Qα and on the initial conditions. The action variables give
all the conserved quantities of the dynamical system under

study, as certified by the Bour-Liouville theorem. They can be
geometrically interpreted as the area enclosed by �α .

If the Hamiltonian is time dependent and slowly varying in
comparison with the typical period of a cycle, then the action
variables are slowly varying too. They are called adiabatic
invariants [7,13,14] and may be used in a wide range of
applications such as in electromagnetism [15], plasma physics
[16], and cosmology [17]. Previous works in biomechanics
showed the invariance of the action variable when experi-
mental conditions are time independent [9,18–20]. We apply
this concept to human motion in time-varying environments.
Our approach can reveal the important and otherwise hidden
quantities on which the brain relies to plan actions. Advances
in this field can potentially not be reached with other, more
classical, methods that rest on energy conservation [21]. We
therefore designed an experimental setup in which the external
factors are time dependent. It is described in the next section,
together with its mechanical model.

III. EXPERIMENT

A. Setup

Six right-handed male participants (40.1 ± 7.2 years old)
took part in two centrifugation sessions at QinetiQ’s Flight
Physiological Centre in Linköping, Sweden. The centrifuge
was controlled to deliver specific g(t ) profiles. The real-time
control of the orientation of the gondola ensured alignment
of local gravity with the long body axis (Fig. 1, inset). One
session of centrifugation consisted in a ramp-up followed by
a ramp-down g(t ) profile for 180 s. There were two equivalent
sessions separated by a 5-min break bringing the centrifuge
back to an idle position. The initial 1g phases (idle) lasted for
27.4 s. Then, the system generated 1.5g, 2g, 2.5g, 3g, 2.5g, 2g,
1.5g, and 1g. Each phase lasted 18.4 s and transitions lasted
1.6 s (average rate of 0.31g/s), except for the first and last
ones. We label a given transition by T ±

n where it is meant
that g(t ) goes from the value (n + 1)g/2 to the value (n +
1 + η)g/2, with η = ±1. The increasing (decreasing) gravita-
tional transitions correspond to η = +1 (−1). In both cases,
n ∈ {1, 2, 3, 4}. The first decreasing-g series is T −

4 while the
last one is T −

1 (Fig. 1). A medical flight doctor assessed the
participant’s health status before the experiment. The clinical
examination consisted in the recording of an electrocardio-
gram and the measurement of arterial pressure in addition
to a health questionnaire that aimed at estimating lifestyle
(smoker, sport activities, etc). The protocol was reviewed and
approved by the Facility Engineer from the Swedish Defence
Material Administration (FMV) and an independent medical
officer. The experiment was overseen by a qualified medi-
cal officer. The study was conducted in accordance with the
Declaration of Helsinki (1964). All participants gave informed
and written consent prior to the study. A similar protocol
was used in a previous study where the human centrifuge is
described in detail [22].

Participants were ask to perform upper arm rhythmic
movements about the elbow at a free, comfortable pace and
amplitude only during the transitions between gravitational
environments, to limit fatigue. The elbow was first in con-
tact with the support. When prompted by a GO signal, the
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FIG. 1. Typical plot of raw data recorded by the accelerometer (colored line) during a single session of centrifugation (inset). The black
line depicts local gravity. All measured accelerations are expressed in units of g = 9.81 m/s2. The plateau phases are shown for the first and
last transitions. For the other transitions, plateau phases and rest periods are not displayed for the sake of clarity but are replaced by vertical
lines.

participant started to perform the movement while holding
a test object. This wireless test object (mass of 0.13 kg)
embedded an accelerometer that measured combined gravi-
tational and kinematic accelerations along the object’s long
axis (AIS326DQ, range 30 m/s2, accuracy ±0.2 m/s2). The
acceleration signal was sampled at a frequency of 120 Hz. The
upper arm produced movements of about 30◦ with the hor-
izontal. When the operator announced the STOP signal, the
participant gently let the object touch the support again while
still securing it with his hand. A schematic representation of
raw data (acceleration versus time) of one session for one
subject is displayed in Fig. 1. We refer the interested reader to
Ref. [22] for more detail and pictures about the experimental
setup.

B. Harmonic oscillator and participant’s motion

Accelerations a(t ) were numerically integrated and lin-
early detrended after subtraction of g(t ) to yield the object’s
speed and position x(t ). The link

a = −ω2 x (3)

is observed for all participants within a given transition (96
time series): The averaged Pearson’s correlation coefficient
between a and x is indeed equal to −0.82 ± 0.1. A typical
plot is shown in Fig. 2; the behavior observed for all the
participants is similar. On average, ω = 6.3 Hz leading to a
typical period of T = 0.99 s. Hence, we are on safe ground to
assume that the effective dynamics of the test object along the
body axis is compatible with that of a harmonic oscillator, i.e.,
with a Hamiltonian of the form

H = P2

2
+ 1

2
ω(t )2Q2, with P = Q̇ and Q = x. (4)

The parameter of model (4) is the function ω(t ). Careful
inspection of the experimental data let us conclude that ω(t )
vs g(t ) is compatible with a weakly increasing linear shape
(see Fig. 2, inset). Hence we assume

ω(t ) = �

(
1 + ε

g
g(t )

)
, (5)

and we will perform computations up to first order in ε

throughout the rest of the paper. Equation (5) has the follow-
ing physiological interpretation: Muscle stiffness increases
with gravitational acceleration to account for the larger mo-
tor commands required to perform the same movement. This
leads to a modified frequency and to ε > 0.

Figure 3 depicts a typical phase space of a complete cen-
trifugation session. Elliptic cycles are clearly visible and are
the consequence of the harmonic-oscillator dynamics. The
area of these ellipses is slowly changing with g as expected
from adiabatic invariant’s theory [7] that we now use to model
the experiment described above.

C. Model

Let us now focus on a given transition T ±
n . Equation (5)

can be adapted to the peculiar shape of g(t ) imposed during

FIG. 2. Typical plot of acceleration vs position for the test object
during one centrifugation session, with the same participant as Fig. 1
(colored points). A global linear regression is shown (solid line). The
inset quantifies the significant linear relationship between ω and g.
Dots result from a fit of the form (3) by bins of 0.1g.
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FIG. 3. Left panel: Typical phase-space plot of the test object trajectory during one centrifugation session, with the same participant as
Fig. 1. Right panel: Same data but the consecutive cycles are now unfolded along the time dimension.

the centrifugation, compatible with

ωn(t ) = �n[1 + ε s(t )], �n = ω0

[
1 + ε

2

(
n − 1

2

)]
,

s(t ) = η

4
sin(	t ), η = ±1, with t ∈

[
− π

2	
,

π

2	

]
.

(6)

Action-angle coordinates (I, φ) may be defined from (4)
through the standard definition [7]

Q =
√

2I

ω
sin φ, P =

√
2Iω cos φ, (7)

and their equations of motion read

İ = − ω̇

ω
I cos 2φ, φ̇ = ω + ω̇

2ω
sin 2φ. (8)

We have shown in Ref. [23] that I (t ) and φ(t ) can be
analytically computed at order ε from Eq. (8) when g(t ) is
of trigonometric form. This gives

I (t ) = Ī

[
1 − ε η

	

16

(
1

ω+ sin[2(ω+t + α)] + (+ ↔ −)

)]
,

φ(t ) = α + �nt − ε η
ω0

4	
cos(	t )

− ε η
	

32

(
1

ω+ cos[2(ω+t + α)] + (+ ↔ −)

)
, (9)

with ω± = ω0 ± 	
2 and ω0 > 	.

The action variable takes a simpler form when P = 0, i.e.,
for tk such that

φ(tk ) = (2k + 1)π/2 =: φk, k ∈ Z (10)

[see Eq. (7)]. The analytical shape of the times tk such that
φ(tk ) = φk may be complicated but since our goal is the com-
putation of I (tk ), it is sufficient to work with the lowest-order
solution tk = φk−α

ω0
, leading to

I (tk ) = Ī

(
1 − ε

	2

4ω2
0 − 	2

s(tk )

)
. (11)

For a given transition T ±
n , g(t )/g = n+6

2 + s(t ). Hence,
I (tk ) = An,η + B g(tk ), where An,η and B are real constants,

and where B = dI/dg does not depend on n and η. It allows
us to append the transitions and get an affine relation between
I (tk ) and g(tk ) during the whole centrifugation session,

I (tk ) =: I0 + I1 g(tk ), (12)

with I0 ∈ R+ and I1 ∈ R. The shift in I (t ) predicted by
Eqs. (9) and (12) extends previous results obtained in Ref. [24]
where an analytical shape is obtained for I (t ) with arbitrary
ω(t ) provided that the latter is not C∞. Equation (12) defines
a model that can be compared to experimental data.

IV. RESULTS

We have computed phase-space trajectories of all partici-
pants in both centrifugation sessions. It is therefore possible
to compute the action variable as a function of time. Indeed,
Eq. (2) can be rewritten as I (t ) = ∫ t∗

t Q̇2 dt from (4), with
t∗ the end of the phase-space cycle starting at t . The instant
t∗ > t is such that the distance between the points (Q(t ), P(t ))
and (Q(t∗), P(t∗)) in phase space is minimal and the differ-
ence t∗ − t is numerically as close as possible to T. Once
the action variables I (t ) are known, the times tk such that
P(tk ) = 0 are computed as well as the action variables I (tk ).
Continuous values I (tk ) of all participants and all trials are
finally discretized into 0.1g bins ranging from 1 to 3g. Each
bin contains between 14 and 23 data points. Average values
and standard deviations (SD) of I normalized to the 1g value
(Inorm) are finally displayed in Fig. 4.

The adiabatic invariant exhibits a strong and significant
positive (I1 > 0) linear relationship with gravity both in the in-
creasing and decreasing phases (Fig. 4). According to Eq. (1),
it shows an expected higher energetic cost in high gravity for
a given change in frequency, which is expected since raising
the test object by a height �h has a potential energetic cost of
order mg�h.

Despite this overall coherent dependence of I over g, we
observed asymmetries in the slopes I1 [Eq. (12)] between
ascending and descending phases. To quantify this effect,
we ran a two-way repeated measures analysis of variance
(ANOVA) with the factors session (1 or 2) and phase (in-
creasing or decreasing). This analysis shows that the slope
I1 is significantly larger in the increasing phase than in the
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FIG. 4. Mean values (and 1 SD error bars) of the adiabatic invariant Inorm per bin, normalized to the 1g value, vs g(t ). Significant linear
regressions of the experimental data are depicted as a solid black line together with their Pearson’s correlation coefficients and p values. The
left panel presents data in the ascending g(t ) phase and the right panel presents data in the descending g(t ) phase. Note that in the descending
phase, the horizontal axis is decreasing in order to provide a continuous and chronological reading of the evolution of Inorm.

decreasing phase (I1 = 0.296 ± 0.306 > 0.523 ± 0.219, p =
0.037). This asymmetry was not influenced by session (p =
0.130). Behavioral asymmetries with respect to gravity have
already been reported in other tasks such as collisions between
an object and a target [25] and in grip-load force modulation
in rhythmic movements executed in ascending and descend-
ing hypergravity phases [22]. The stronger reliance of the
adiabatic invariant on g may reflect a more salient cognitive
strategy in situations when mechanical constraints become
more challenging due to the increase of gravity.

It may be conjectured that the adiabatic invariant is eventu-
ally modulated by vestibular and/or proprioceptive gains and
readjustments of central pattern generators (CPGs) during that
phase. At a spinal cord level, indeed, rhythmic movements
in mammals are organized by a network of interneurons and
motor neurons called CPGs [26,27]. The observation of rapid
adaptation of rhythmic forearm movements may suggest that
vestibular and proprioceptive feedbacks are the major source
of information used by CPGs to ensure adjustments to altered
gravity, especially when it increases and becomes more de-
manding for the control of the task.

The variability of Inorm at a given g is globally lower in
the decreasing than in the increasing-g phase as can be seen
from the error bars in Fig. 4. It suggests habituation takes
place because the decreasing-g phase always followed the
increasing-g one. The higher variability during the increasing
phase is consistent with the realization of a movement in a
new situation. During the decreasing phase, motor learning
achieved in the previous phase made it possible to induce a
gradual reduction of variability in order to optimize the move-
ment patterns that are compatible with a simple harmonic
oscillator. Of course, anharmonic corrections are expected at
higher orders in ε. Still, it is remarkable that such a simple
textbook model of harmonic oscillator with time-dependent
frequency can capture the essential features of human motor
control when facing variable gravity.

V. CONCLUSION

In summary, participants show a spontaneous adaptation
of their motion that is compatible with the expectation of

a simple harmonic oscillator with weakly gravity-dependent
frequency. Previous analyses using the same centrifuge data
did not involve the computation of the action variable and
focused instead on other physical quantities, such as the grip
force [22]. Here, the participant’s adaptation is assessed by
the computation of adiabatic invariants, whose experimental
behavior versus g complies with our model’s prediction. Adi-
abatic invariants may thus be a relevant model of the choices
made by spinal and supraspinal nervous structures among
an infinite number of possible solutions to a given problem,
i.e., the motion of our test object in the present case. It is
worth noting that, according to our model, I ∼ T Ēc, with T
one cycle’s period and Ēc the average kinetic energy on this
period. The behavior of I vs g reveals a “hidden” constraint in
the participants’ movements: They may show variability in the
cycle durations and speed profiles, but still they will be such
that the product T Ēc will be that imposed by the adiabatic
invariant theory. This simple mechanical constraint is revealed
behind the complexity of the human actions involved in the
forearm motion.

Future works might go beyond the harmonic oscillator
description of the effective dynamics but still in a phase-
space-based formalism. As shown in Ref. [23], adiabatic
invariants can be computed in the case of higher-derivative
Hamiltonians of Pais-Uhlenbeck type. Such Hamiltonians
could describe rhythmic motions with several frequencies and
discrete movements through, e.g., minimal jerk models [28].
We are currently investigating how our model can be gen-
eralized by analyzing complex trajectories performed during
parabolic flight, therefore also including the very particular
case of an absence of gravity [29,30].

ACKNOWLEDGMENTS

This research was supported by the European Space
Agency (ESA) in the framework of the Delta-G Topical Team
(e), the Institut National de la Santé et de la Recherche
Médicale (INSERM) and the Conseil Général de Bourgogne
(France), and by the Centre National d’Etudes Spatiales Grant
No. 4800000665 (CNES).

062403-5



N. BOULANGER et al. PHYSICAL REVIEW E 102, 062403 (2020)

[1] A. Aubert, I. Larina, I. Momken, S. Blanc, O. White, G. K.
Prisk, and D. Linnarsson, npj Microgravity 2, 16031 (2016).

[2] O. White, G. Clément, J.-O. Fortrat, A. Pavy-LeTraon, J.-L.
Thonnard, S. Blanc, F. L. Wuyts, and W. H. Paloski, npj
Microgravity 2, 16023 (2016).

[3] T. Lang, J. Van Loon, S. Bloomfield, L. Vico, A. Chopard, J.
Rittweger, A. Kyparos, D. Blottner, I. Vuori, R. Gerzer et al.,
npj Microgravity 3, 8 (2017).

[4] P. MacNeilage and S. Glasauer, Curr. Biol. 28, R1296 (2018).
[5] D. E. Angelaki, A. G. Shaikh, A. M. Green, and J. D. Dickman,

Nature (London) 430, 560 (2004).
[6] M. Kawato, Curr. Opin. Neurobiol. 9, 718 (1999).
[7] L. Landau and E. Lifchitz, Physique Théorique Tome 1: Mé-

canique (Mir, Moscow, 1988).
[8] D. Nowak and J. Hermsdörfer, Eur. J. Neurosci. 18, 2883

(2003).
[9] M. Turvey, K. Holt, J. Obusek et al., Biol. Cybern. 74, 107

(1996).
[10] H. Dumas, The KAM Story: A Friendly Introduction to the

Content, History, and Significance of Classical Kolmogorov-
Arnold-Moser Theory (World Scientific, Hackensack, NJ,
2014).

[11] N. Nekhoroshev, Funct. Anal. Appl. 5, 338 (1971).
[12] N. N. Nekhoroshev, Usp. Mat. Nauk 32, 5 (1977) [Russian

Math. Surveys 32, 1 (1977)].
[13] J. Henrard, The Adiabatic Invariant in Classical Mechanics

(Dessy, Hamburg, 1998), pp. 60–73.
[14] J. Jose and E. Saletan, Classical Dynamics: A Contempo-

rary Approach (Cambridge University Press, Cambridge, UK,
1998).

[15] J. L. Tennyson, J. R. Cary, and D. F. Escande, Phys. Rev. Lett.
56, 2117 (1986).

[16] J. Notte, J. Fajans, R. Chu, and J. S. Wurtele, Phys. Rev. Lett.
70, 3900 (1993).

[17] S. Cotsakis, R. L. Lemmer, and P. G. L. Leach, Phys. Rev. D
57, 4691 (1998).

[18] P. Kugler and M. Turvey, Information, Natural Law, and the
Self-Assembly of Rhythmic Movement (Routledge, London,
1987).

[19] P. Kugler, M. Turvey, R. Schmidt, and L. Rosenblum, Ecol.
Psychol. 2, 151 (1990).

[20] E. Kadar, R. Schmidt, and M. Turvey, Biol. Cybern. 68, 421
(1993).

[21] R. M. Alexander, Biol. Cybern. 76, 97 (1997).
[22] O. White, J.-L. Thonnard, P. Lefèvre, and J. Hermsdörfer, Front.

Physiol. 9, 131 (2018).
[23] N. Boulanger, F. Buisseret, F. Dierick, and O. White, Eur. Phys.

J. C 79, 60 (2019).
[24] R. Kulsrud, Phys. Rev. 106, 205 (1957).
[25] O. White, P. Lefèvre, A. M. Wing, R. M. Bracewell, and J.-L.

Thonnard, PLoS ONE 7, e44291 (2012).
[26] E. Marder and D. Bucher, Curr. Biol. 11, R986 (2012).
[27] E. P. Zehr, T. J. Carroll, R. Chua, D. F. Collins, A. Frigon, C.

Haridas, S. R. Hundza, and A. K. Thompson, Can. J. Physiol.
Pharmacol. 82, 556 (2004).

[28] T. Flash and N. Hogan, J. Neurosci. 5, 1688 (1985).
[29] O. White, N. Dowling, R. M. Bracewell, and J. Diedrichsen, J.

Neurophysiol. 100, 2738 (2008).
[30] N. Boulanger, F. Buisseret, V. Dehouck, F. Dierick, and O.

White (unpublished).

062403-6

https://doi.org/10.1038/npjmgrav.2016.31
https://doi.org/10.1038/npjmgrav.2016.23
https://doi.org/10.1038/s41526-017-0013-0
https://doi.org/10.1016/j.cub.2018.09.053
https://doi.org/10.1038/nature02754
https://doi.org/10.1016/S0959-4388(99)00028-8
https://doi.org/10.1111/j.1460-9568.2003.03011.x
https://doi.org/10.1007/BF00204199
https://doi.org/10.1007/BF01086753
https://doi.org/10.1070/RM1977v032n06ABEH003859
https://doi.org/10.1103/PhysRevLett.56.2117
https://doi.org/10.1103/PhysRevLett.70.3900
https://doi.org/10.1103/PhysRevD.57.4691
https://doi.org/10.1207/s15326969eco02024
https://doi.org/10.1007/BF00198774
https://doi.org/10.1007/s004220050324
https://doi.org/10.3389/fphys.2018.00131
https://doi.org/10.1140/epjc/s10052-019-6569-y
https://doi.org/10.1103/PhysRev.106.205
https://doi.org/10.1371/journal.pone.0044291
https://doi.org/10.1016/S0960-9822(01)00581-4
https://doi.org/10.1139/y04-056
https://doi.org/10.1523/JNEUROSCI.05-07-01688.1985
https://doi.org/10.1152/jn.90593.2008

